SELECT ?property ?value WHERE { BIND (?? AS ?s) ?s ?property ?value . FILTER (isLiteral(?value)) } LIMIT 1000

Attributes

Quantity Kind Dimension vector (SI)
SELECT ?property ?object WHERE { BIND (?? AS ?s) ?s ?property ?object . FILTER (isIRI(?object)) FILTER (?property != rdf:type) FILTER (?property != rdfs:subClassOf) } LIMIT 1000

Outgoing Relationships

property object
isDefinedBy QUDT Schema - Version 3.1.9
SELECT ?property ?subject WHERE { BIND (?? AS ?o) ?subject ?property ?o . FILTER (?property != rdf:type) FILTER (?property != rdfs:subClassOf) } LIMIT 1000

Incoming Relationships

property subject
range dimension vector for SI
allValuesFrom b13_b5420
SELECT ?instance ?description WHERE { BIND (?? AS ?class) ?instance (rdf:type|owl:type) ?class . OPTIONAL { ?instance schema:description ?description . } } LIMIT 5000

Instances of this Class

instance description
A0E0L2I0M1H0T-2D0
A0E0L1I0M0H0T0D0
A0E0L2I0M0H0T0D0
A0E0L0I0M1H0T0D0
A0E0L0I0M0H0T1D0
A0E0L0I0M0H0T0D1
A0E1L0I0M0H0T0D0
A0E1L0I0M0H0T1D0
A0E0L0I0M0H1T0D0
A0E0L0I1M0H0T0D0
A1E0L0I0M0H0T0D0
A0E0L1I0M1H0T-1D0
A0E0L1I0M0H0T-1D0
A0E1L2I0M0H0T0D0
A0E1L-1I0M0H0T0D0
A0E1L-2I0M0H0T0D0
A0E1L0I0M0H-1T0D0
A0E1L-2I0M-1H0T3D0
A0E0L3I0M0H0T0D0
A0E0L-1I0M1H0T-2D0
A0E2L-3I0M-1H0T3D0
A0E2L-2I0M-1H0T4D0
A0E0L2I0M1H0T-1D0
A0E-1L1I0M1H0T-3D0
A0E0L2I0M1H0T-3D0
A0E0L3I0M0H0T-1D0
A0E0L0I0M0H0T-1D0
A0E0L-3I0M0H0T-1D0
A0E0L-3I0M0H0T0D0
A0E0L3I0M1H0T-2D0
A0E0L1I0M1H-1T-3D0
A0E0L2I0M1H-1T-2D0
A0E0L0I0M1H0T-2D0
A0E0L0I0M1H-1T-3D0
A0E0L0I0M1H0T-3D0
A0E0L2I0M0H0T-2D0
A0E0L2I0M0H-1T-2D0
A-1E0L2I0M1H-1T-2D0
A0E1L1I0M0H0T1D0
A0E1L2I0M0H0T1D0
A0E2L0I0M-1H0T4D0
A0E1L-2I0M0H0T1D0
A0E1L-3I0M0H0T1D0
A0E1L0I0M-1H0T1D0
A0E1L0I0M-1H0T0D0
A0E1L-1I0M0H0T1D0
A-1E1L0I0M0H0T1D0
A0E3L-1I0M-2H0T7D0
A0E4L-2I0M-3H0T10D0
A0E0L-2I1M0H0T0D0
A0E0L0I0M-1H1T3D0
A0E0L1I0M0H-1T0D0
A0E0L1I0M0H0T-2D0
A0E0L2I0M0H0T1D0
A0E0L-1I0M0H0T0D0
A0E0L2I0M0H0T-1D0
A0E0L3I0M0H-1T0D0
A-1E0L3I0M0H0T0D0
A1E0L0I0M-1H0T0D0
A0E0L-1I0M1H0T-1D0
A0E0L1I0M0H0T1D0
A0E0L0I0M0H0T-2D0
A0E0L1I0M0H0T2D0
A0E0L-3I0M1H0T0D0
A0E0L1I0M0H1T0D0
A0E0L-2I0M1H1T0D0
A0E0L0I0M0H1T-1D0
A0E0L-1I0M0H1T0D0
A0E0L0I0M0H2T-1D0
A0E0L-1I0M-1H1T3D0
A0E0L-2I0M-1H1T3D0
A0E0L1I0M1H0T-2D0
A0E0L0I0M1H0T-1D0
A0E0L-2I0M1H0T-1D0
A0E0L-1I0M1H0T-3D0
A0E0L3I0M-1H0T0D0
A0E0L-1I0M1H0T0D0
A0E0L2I0M0H0T-3D0
A0E2L-3I0M-1H0T4D0
A0E0L2I0M0H1T0D0
A0E0L2I0M0H1T1D0
A1E0L-3I0M0H0T0D0
A0E-1L0I0M1H0T-2D0
A0E0L1I0M1H0T0D0
A0E0L-2I0M1H0T0D0
A0E0L0I0M1H1T0D0
A-1E0L0I0M1H0T0D0
A0E-2L2I0M1H0T-3D0
A0E-2L2I0M1H0T-2D0
A0E-2L1I0M1H0T-2D0
A0E0L0I0M0H-1T-1D0
A0E1L-2I0M-1H0T2D0
A0E0L4I0M1H0T-3D0
A0E0L4I0M0H0T0D0
A-1E0L3I0M1H0T-2D0
A0E0L-1I0M0H-1T-2D0
A0E0L3I0M-1H-1T0D0
A0E0L-1I0M1H-1T-2D0
A0E0L-2I0M1H0T-2D0
A-1E0L2I0M1H0T-2D0
A0E2L2I0M-1H0T2D0
A-1E0L2I0M1H0T-1D0
A0E0L1I0M0H1T-1D0
A0E0L2I0M-1H1T-1D0
A0E0L-1I0M1H1T-3D0
A0E1L0I0M-1H1T2D0
A0E0L0I0M0H1T1D0
A0E0L0I0M0H2T0D0
A1E0L0I0M0H0T-1D0
A0E0L2I0M1H0T0D0
A0E0L-3I0M1H0T-1D0
A0E0L0I0M2H0T-2D0
A0E-1L2I0M1H0T-2D0
A0E0L3I0M0H0T-2D0
A0E2L-2I0M-1H0T3D0
A0E-1L2I0M1H0T-3D0
A0E-2L3I0M1H0T-4D0
A0E0L2I0M0H0T-4D0
A0E0L2I0M-1H0T0D0
A0E0L2I0M0H0T2D0
A0E0L2I0M0H-1T0D0
A0E0L3I0M-1H0T-2D0
A0E0L4I0M0H0T-1D0
A1E0L0I0M0H1T0D0
A1E0L0I0M-1H0T-1D0
A1E0L-2I0M0H0T0D0
A1E0L-2I0M0H0T-1D0
A1E0L-3I0M0H0T-1D0
A0E0L0I0M-1H0T-1D0
A0E0L-2I0M0H0T-1D0
A0E0L-2I0M0H0T0D0
A0E0L-2I0M0H0T-2D0
A0E0L1I0M0H0T-3D0
A0E2L-4I0M-1H0T3D0
A0E-1L2I0M1H0T-4D0
A0E-1L1I0M1H0T-2D0
A0E0L-1I0M0H0T-1D0
A0E0L0I0M-1H0T0D0
A0E0L0I0M1H0T-4D0
A0E0L-2I0M2H0T-6D0
A0E0L1I0M-1H0T2D0
A0E0L-4I0M-2H0T4D0
A0E0L-2I0M-1H0T2D0
A0E0L-1I0M0H-1T0D0
A-1E0L0I0M0H0T0D0
A-1E0L-3I0M0H0T0D0
A0E0L1I0M-1H0T1D0
A0E0L0I0M-2H0T0D0
A0E1L-1I0M-1H0T2D0
A-1E1L-3I0M0H0T0D0
A1E0L-3I0M-1H0T2D0
A0E0L-3I0M1H0T-3D0
A0E0L-1I0M0H0T1D0
A0E0L0I0M0H0T2D0
A0E-1L0I0M1H0T-1D0
A0E-1L3I0M1H0T-3D0
A0E-1L0I0M1H0T-3D0
A0E0L1I0M1H0T-3D0
A0E0L2I0M1H-1T-3D0
A0E0L0I0M1H-4T-3D0
A0E-1L1I0M0H0T0D0
A0E0L4I0M2H0T-4D0
A0E0L-1I0M-1H0T3D0
A0E0L-1I0M0H0T2D0
A0E0L-2I0M0H0T2D0
A0E0L-2I1M0H0T1D0
A0E0L0I0M-1H0T1D0
A0E0L2I0M0H-1T-3D0
A0E0L2I0M1H0T-3D-1
A0E0L3I0M1H0T-1D0
A0E0L4I0M1H0T-3D-1
A0E1L0I0M0H0T0D-1
A0E2L-2I0M-1H0T2D0
A0E2L0I0M0H0T1D0
A0E4L-5I0M-3H0T10D0
A0E0L-2I0M1H0T-3D0
A0E0L0I0M0H-1T0D0
A0E0L3I0M0H1T0D0
A1E0L1I0M-2H0T2D0
A0E1L-2I0M0H-2T0D0
A0E0L1I0M0H1T1D0
A0E0L4I0M1H0T-2D0
A0E0L4I0M0H0T-2D0
A0E0L0I0M-1H0T2D0
A-1E0L2I0M0H0T0D0
A0E1L0I0M-1H0T4D0
A0E-1L3I0M0H0T-1D0
A0E-2L3I0M1H0T-3D0
A0E0L-4I0M1H0T-1D0
A0E0L-2I0M2H0T-3D0
A0E0L-3I0M0H0T1D0
A0E-1L2I0M1H-1T-3D0
A0E-2L4I0M2H-2T-6D0
A-1E0L3I0M0H0T-1D0
A0E-1L3I0M1H0T-2D0
A0E0L0I0M1H0T2D0
A1E0L0I0M1H0T0D0
A0E0L5I0M0H0T0D0
A0E0L6I0M0H0T0D0
A0E0L-2I1M-1H0T3D0
A0E0L0I0M0H1T-2D0
A0E3L-3I0M-2H0T7D0
A-1E2L0I0M-1H0T3D0
A0E2L-1I0M-1H0T4D0
NotApplicable
A0E0L0I1M0H0T1D0
A0E0L-5I0M-1H0T2D0
A0E0L0I0M-1H0T3D0
A0E1L0I0M-1H0T2D0
A0E0L-2I0M-1H0T3D0
A0E0L-1I0M-1H0T2D0
A0E0L0I0M1H-1T0D0
A0E0L-0dot5I0M1H0T-2D0
A0E1L0I0M0H0T2D0
A0E0L0I0M1H0T1D0
A0E0L-1I0M2H0T-2D0
A2E0L-4I0M0H0T-2D0
A0E4L-6I0M-2H0T6D0
A1E0L-3I0M1H0T0D0
A1E0L-2I0M0H0T-2D0
A0E-2L2I0M1H-1T-2.5D0
A0E0L-4I0M1H0T-3D0
A0E0L0I0M1H0T-3D1
SELECT ?superclass ?description WHERE { ?? rdfs:subClassOf ?superclass . OPTIONAL { ?superclass (rdfs:comment|schema:description) ?description . } } LIMIT 5000

Superclasses of this Class

superclass description
Quantity Kind Dimension Vector <p class="lm-para">A <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.</p> <p class="lm-para">The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.</p> <p class="lm-para">For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>
SELECT ?subclass ?description WHERE { ?subclass rdfs:subClassOf ?? . OPTIONAL { ?subclass (rdfs:comment|schema:description) ?description . } } LIMIT 5000
Subclasses of this Class: No results found.