<p class="lm-para">A <em>Quantity Kind Dimension Vector</em> describes the dimensionality of a quantity kind in the context of a system of units. In the SI system of units, the dimensions of a quantity kind are expressed as a product of the basic physical dimensions mass ($M$), length ($L$), time ($T$) current ($I$), amount of substance ($N$), luminous intensity ($J$) and absolute temperature ($\theta$) as $dim \, Q = L^{\alpha} \, M^{\beta} \, T^{\gamma} \, I ^{\delta} \, \theta ^{\epsilon} \, N^{\eta} \, J ^{\nu}$.</p>
<p class="lm-para">The rational powers of the dimensional exponents, $\alpha, \, \beta, \, \gamma, \, \delta, \, \epsilon, \, \eta, \, \nu$, are positive, negative, or zero.</p>
<p class="lm-para">For example, the dimension of the physical quantity kind $\it{speed}$ is $\boxed{length/time}$, $L/T$ or $LT^{-1}$, and the dimension of the physical quantity kind force is $\boxed{mass \times acceleration}$ or $\boxed{mass \times (length/time)/time}$, $ML/T^2$ or $MLT^{-2}$ respectively.</p>